TensorFlow common methods:
Notes:
tf refers to the tensorflow data structure, in this guide we present the TensorFlow common methods
Extracting Values
Indexing:
tf[index]: Extracts elements from a tensor using indices.
Transforms data type tensorflow
tf.numpy().tolist(): Transforms data ype into python list
tf.numpy(): Transforms data type into numpy array
TensorFlow Operations:
tf.gather: Extracts elements from a tensor based on indices.
tf.slice: Extracts a slice of a tensor.
tf.boolean_mask: Extracts elements based on a boolean mask.
tf.reduce_max, tf.reduce_min, tf.reduce_mean: Computes aggregate values over the tensor.
Arithmetic Operations
Addition:
tf.add(x, y): Adds two tensors element-wise.
Subtraction:
tf.subtract(x, y): Subtracts one tensor from another element-wise.
Multiplication:
tf.multiply(x, y): Multiplies two tensors element-wise.
Division:
tf.divide(x, y): Divides one tensor by another element-wise.
Power:
tf.pow(x, y): Raises a tensor to a power element-wise.
Square Root:
tf.sqrt(x): Calculates the square root of each element in a tensor.
Absolute Value:
tf.abs(x): Calculates the absolute value of each element in a tensor.
Negation:
tf.negative(x): Negates each element in a tensor.
Matrix Operations
Matrix Multiplication:
tf.matmul(x, y): Multiplies two matrices.
Transpose:
tf.transpose(x): Transposes a tensor.
Determinant:
tf.linalg.det(x): Calculates the determinant of a square matrix.
Inverse:
tf.linalg.inv(x): Calculates the inverse of a square matrix.
Trace:
tf.linalg.trace(x): Calculates the trace of a matrix.
Eigenvalues:
tf.linalg.eigvals(x): Calculates the eigenvalues of a matrix.
Activation Functions
Sigmoid:
tf.sigmoid(x): Applies the sigmoid activation function.
ReLU:
tf.nn.relu(x): Applies the rectified linear unit (ReLU) activation function.
Tanh:
tf.tanh(x): Applies the hyperbolic tangent activation function.
Softmax:
tf.nn.softmax(x): Applies the softmax activation function, often used for classification.
Leaky ReLU:
tf.nn.leaky_relu(x): Applies the leaky ReLU activation function.
ELU:
tf.nn.elu(x): Applies the exponential linear unit (ELU) activation function.
Loss Functions
Mean Squared Error:
tf.keras.losses.mean_squared_error(y_true, y_pred): Calculates the mean squared error between predicted and true values.
Cross-Entropy:
tf.keras.losses.categorical_crossentropy(y_true, y_pred): Calculates the categorical cross-entropy loss.
Binary Cross-Entropy:
tf.keras.losses.binary_crossentropy(y_true, y_pred): Calculates the binary cross-entropy loss.
Hinge Loss:
tf.keras.losses.hinge(y_true, y_pred): Calculates the hinge loss, often used in support vector machines.
Cosine Similarity:
tf.keras.losses.cosine_similarity(y_true, y_pred): Calculates the cosine similarity between two vectors.
Optimization Algorithms
Gradient Descent:
tf.keras.optimizers.SGD(): Implements the stochastic gradient descent optimization algorithm.
Adam:
tf.keras.optimizers.Adam(): Implements the Adam optimization algorithm.
RMSprop:
tf.keras.optimizers.RMSprop(): Implements the RMSprop optimization algorithm.
Adagrad:
tf.keras.optimizers.Adagrad(): Implements the Adagrad optimization algorithm.
Neural Network Layers
Dense:
tf.keras.layers.Dense(): Creates a fully connected layer.
Convolutional:
tf.keras.layers.Conv2D(): Creates a 2D convolutional layer.
Recurrent:
tf.keras.layers.LSTM(): Creates a long short-term memory (LSTM) layer.
Pooling:
tf.keras.layers.MaxPooling2D(): Creates a 2D max pooling layer.
Dropout:
tf.keras.layers.Dropout(): Applies dropout regularization.
Batch Normalization:
tf.keras.layers.BatchNormalization(): Applies batch normalization.
Data Manipulation
Reshaping:
tf.reshape(x, shape): Reshapes a tensor.
Slicing:
tf.slice(x, begin, size): Extracts a slice from a tensor.
Concatenation:
tf.concat(values, axis): Concatenates tensors along a specified axis.
Stacking:
tf.stack(values, axis): Stacks tensors along a new axis.
Tile:
tf.tile(x, multiples): Repeats a tensor multiple times.
Padding:
tf.pad(x, paddings): Pads a tensor with zeros.
Miscellaneous
Reduce Mean:
tf.reduce_mean(x): Calculates the mean of a tensor.
Reduce Sum:
tf.reduce_sum(x): Calculates the sum of a tensor.
Reduce Max:
tf.reduce_max(x): Calculates the maximum value in a tensor.
Reduce Min:
tf.reduce_min(x): Calculates the minimum value in a tensor.
Cast:
tf.cast(x, dtype): Casts a tensor to a different data type.
Shape:
tf.shape(x): Returns the shape of a tensor.
Size:
tf.size(x): Returns the number of elements in a tensor.
Random:
tf.random.uniform(shape): Generates random numbers from a uniform distribution.